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This paper introduces efficient and accurate algorithms for simulating the rotation
of a three-dimensional rigid object and compares them to several prior methods.
First, we introduce a second-order-accurate method that incorporates a third-order
correction; then we introduce a third-order-accurate method; and finally we give a
fourth-order-accurate method. These methods are single-step and the update opera-
tion is only a single rotation. The algorithms are derived in a general Lie group setting.
Second, we introduce a near-optimal energy-correction method which allows exact
conservation of energy. This algorithm is faster and easier to implement than implicit
methods for exact energy conservation. Our third-order method with energy conserva-
tion is experimentally seen to act better than a fourth-order-accurate method. These
new methods are superior to naive Runge–Kutta or predictor–corrector methods,
which are only second-order accurate for sphere-valued functions. The second-order
symplectic McLachlan–Reich methods are observed to be excellent at approximate
energy conservation but are not as good at long-term accuracy as our best methods. Fi-
nally we present comparisons with fourth-order-accurate symplectic methods, which
have good accuracy but higher computational cost.c© 2000 Academic Press
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1. INTRODUCTION

In this paper we consider the problem of simulating accurately and efficiently the motion
of a three-dimensional, rigid object. We are firstly interested in methods which preserve,
or nearly preserve, the physical quantities of angular energy and angular momentum and
secondly interested in methods which are highly accurate over a period of time.

For simplicity, this paper considers primarily the situation where the body is moving
freely, with no applied forces or torques; however, our methods are stated generally so

1 Supported in part by NSF Grant DMS-9803515.
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as to still apply when forces and torques are present. Our algorithms are designed so that
angular momentum is exactly preserved, and therefore the quality of our algorithms will
be judged by the two criteria of how well they conserve energy and how accurately they
predict orientation. Conservation of energy is a physical law and of course energy should
be conserved by any accurate simulation, but conservation of energy is desirable even in
simulations where accuracy is not important, since if a simulation conserves energy, then
the simulation is guaranteed to be stable.

Section 2 of this paper introduces our notation and reviews the mathematical and physical
theory of rigid rotation. In Section 3, we list a variety of methods for simulation of rigid
rotation. These methods are loosely characterized as “first-order,” or “second-order,” or
“third-order,” or “fourth-order.”2 Our new simulation methods are essentially Taylor series
methods adapted to the nonlinear situation of rigid rotations. One important new aspect of
Section 3 is the introduction of additional third-order terms which dramatically improve the
performances of a traditional second-order or third-order simulation. The additional third-
order term is obtained by an analysis of the effect of time-varying rotation vectors: since
the space of rotations is not a Euclidean space, an additional third-order term is introduced.
Later (in Section 5) we show how to derive the additional third-order term in the general
setting of Lie algebras, and further how to derive higher order methods. Because of the
additional third- and higher- order terms, the traditional methods of solving differential
equations, such as Runge–Kutta and predictor–corrector methods which are fourth-order
correct in a Euclidean space, are only second-order correct for orientation of a rigid body.3

Section 3 also describes the second-order-accurate McLachlan–Reich explicit symplectic
methods and their extensions to fourth-order-accurate methods.

Section 3 concludes with a rough calculation of the relative computational costs of the
most effective simulation methods.

Section 4 introduces a method of correcting a simulation to preserve energy. The energy
correction is applied after a simulation step (or series of simulation steps) and readjusts the
rigid-body orientation to preserve its angular energy. This is done by solving a 3× 3 matrix
equation for the orientation that restores the previous energy value. The adjusted orientation
is obtained by moving at almost right angles to the path of the correct orientation so that
very little simulation error is introduced by the energy-correction step.

Section 5 derives our third-order correction term in the setting of Lie algebras. This
derives a fourth-order-accurate algorithm as well and is extended to even higher orders. In
addition, it means that our higher order (third- and fourth-order) methods can be extended
from the rotation group to general Lie groups.

In Section 6 we show the results of experiments. We focus first on energy preservation
in the case where the energy correction is never applied. This measures how well the
simulation preserve energy and is an important indication of the stability of the simulations.
Our results here show the importance of the inclusion of the correct third-order terms,
since our “augmented” second- and third-order methods greatly outperform second-order

2 The order of accuracy refers to the accuracy in orientation: thus “second-order” means that angular velocity
is computed with first-order accuracy and orientation is computed with second-order accuracy, etc.

3 Since preparing the first version of this paper, we have become aware of work by Munthe-Kaas [26, 27], Crouch–
Grossman [5], and Marthinsen–Owren [21, 29], who have given third- and fourth-order-accurate implementations
of Runge–Kutta algorithms on arbitrary Lie manifolds. We have not carried out experiments with any of these
more sophisticated Runge–Kutta algorithms: see the end of Section 3 for our speculative comparisons with our
own algorithms.
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methods such as Runge–Kutta and predictor–corrector. However, the outstanding performer
in terms of energy preservation is the symplectic algorithm of McLachlan–Reich. It is seen
to have a very small energy drift even over as many as 200,000,000 simulation steps when
doing large rotations in each time step.

In the second part of Section 6, we measure the long-term accuracy of the simulations.
First we consider the behavior of the sub-fourth-order-accurate methods. Here our third-
order method vastly outperforms the augmented second-order method, and the augmented
second-order method significantly outperforms the traditional Runge–Kutta and Adams–
Bashforth–Moulton methods. To quantify this, if one considers the trade-off between accu-
racy and computational effort, then our augmented second-order method is approximately
six times more efficient than either Runge–Kutta or Adams–Bashforth–Moulton; whereas
the third-order method is yet significantly more accurate. The McLachlan–Reich second-
order method showed somewhat mixed results since its long-term accuracy depended heav-
ily on the order in which the axes were considered. For the worst axis ordering, it performed
comparably to the other second-order methods, whereas in the optimal axis ordering, the
long-term accuracy was like that of a third-order algorithm. Interestingly, the McLachlan–
Reich symplectic method usually gained long-term accuracy when combined with our
energy-conservation correction (especially with the worst axis ordering). Overall, the best
long-term accuracy was obtained by our third-order method with the energy correction
applied, which showed better than fourth-order accuracy. The computational cost per step
of this method is only slightly worse than the second-order McLachlan–Reich symplectic
methods, and they are both a little cheaper than Runge–Kutta methods. Finally, Section 6
considers fourth-order-accurate methods. Here the McLachlan–Reich fourth-order method
takes the fewest steps to achieve a given level of accuracy, but it has the downside that
13 separate rotations must be taken per step. The large number of rotations per step takes
time and also means additional opportunity for roundoff errors to accrue. The fourth-order
method performed quite well either with or without energy preservation, but for some un-
explained reason, the third-order method with energy preservation still outperformed the
fourth-order method.

The experiments reported in Section 6 confirm that our new third-order and fourth-
order methods are correct and achieve third-order and fourth-order (respectively) accuracy.
When combined with our energy-preservation method, the third-order method behaves like
a better-than-fourth-order-accurate method.

In prior work, a number of authors have considered the problem of accurately simulating
rotation and of ensuring stability through energy conservation. Massoud and Youssef [22]
considered the general problem of numerically solving first-order sphere-valued differential
equations and found that the Runge–Kutta algorithm was not even as good as merely using
the average of the current and the next rotation matrix. This method is only second-order ac-
curate and does not even preserve orthogonality of the rotation matrix. A couple of papers
have designed energy-conserving algorithms based on Newmark’s algorithm: Simo and
Wong [33] have given a second-order-accurate algorithm which exactly preserves momen-
tum and energy and G´eradin and Rixen [12] have developed a related second-order-accurate
algorithm which also preserves energy. These algorithms preserve energy and momentum
exactly but have the drawback of being implicit algorithms, which means that they are
computationally inefficient since the calculation of a single time step requires an iterative
procedure based on Newton’s method to find the next configuration. By comparison, our
algorithms are quite simple and do not involve any iteration. Simo and Wong [33] also
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gave an explicit algorithm based on Newmark’s algorithm which preserves momentum but
not energy. Their best explicit algorithm, ALGO C1 with γ = 1 andβ = 0, is compared
with our algorithms in Section 6: it is seen that this algorithm is essentially equivalent to
our simplest “first-order algorithm,” i.e., that it is quite inaccurate and does not preserve
energy well. Another approach to simulating rigid-body motion is the symplectic algorithm
of Ge and Marsden [11]: their algorithm has long-term stability but is only first-order accu-
rate, does not exactly conserve energy, and has the disadvantage of being implicit. Further
implicit symplectic algorithms for rigid-body-rotation have been given by Channell and
Scovel [4], Ge [10], Lewis and Simo [19], McLachlan and Scovel [25], and Reich [30, 31].
McLachlan [23] and Reich [31] introduced an explicit symplectic algorithm for rigid-
body rotation, which exactly preserves momentum. As discussed above, we compare below
the performance of the McLachlan–Reich explicit algorithm to our other algorithms: it
generally lives up to the high reputation of symplectic algorithms and, in particular, is
excellent at approximately conserving energy over the long term. Dullweber–Leimkuhler–
McLachlan [6] report experiments on the accuracy of rigid-body movements for molecu-
lar dynamics; they also include comparisons with Runge–Kutta style algorithms. Holder–
Leimkuhler–Reich [15] give another symplectic algorithm for rigid-body rotation which is
time-symmetric with variable step size.

For a survey of symplectic algorithms, the reader can refer to Channell and Neri [3].
According to them, symplectic algorithms frequently do not have good accuracy or exact
energy preservation, but they do often succeed in preserving the global, long-term behavior
of a system. Theoretical reasons for the long-term stability of symplectic algorithms have
been given by [1, 14, 32]. There are various methods of extending explicit symplectic
methods to higher order explicit symplectic methods [3, 35, 24]. Using one of these methods,
we implemented and tested a fourth-order version of the McLachlan–Reich symplectic
method. It is compared with our third- and fourth-order methods in Section 6.

2. THE THEORY OF 3D ROTATIONS

This section reviews the basic theory of 3D rotations and establishes notation. We include
a description of Poinsot’s inertial ellipsoid since this will greatly help our intuition about
the accuracy of our algorithms and will form the basis for our energy-preserving algorithm.
The contents of this section are standard and well known (see, e.g., [13] or [34]).

Rotation matrices and vectors.Since translational motion may be decoupled from ori-
entation and rotation, we will be interested in only the orientation and rotational motion
of a rigid body. We presume that we have a rigid body which is changing orientation over
time according to some fixed trajectory and that the center of mass is fixed while the body’s
orientation changes as a function of time. There are two frames of reference: theworld (or
spatial) coordinate system, which is a fixed frame of reference, and thebody coordinate
system, which is a frame of reference attached to the body and which moves with the body.
The two frames of reference have a common origin which is presumed to be at the center of
mass of the body. The orientation of the body at timet can be specified with an orientation
matrixÄ = Ä(t) such that ifv is a vector specified in body coordinates, thenÄv is the vec-
tor expressed in world coordinates. We haveÄ−1 = ÄT , where the superscriptT indicates
the transpose.

A rotation vectorw is a vector which specifies an action of rotation of‖w‖ radians around
the axisw with the direction of rotation specified by the right-hand rule. It is known that
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every orientation matrix corresponds to a rotation vector (see [12] for a comprehensive
survey of various representations of orientation and rotations); and we writeRw for the
orientation matrix which corresponds to the rotation vectorw.

Rotation vectors can be used to express instantaneous angular velocity: in fact, there is a
vectorω = ω(t) such that ifx is a point on the body specified in spatial coordinates, then
the velocity of pointx is given by

ẋ = ω × x.

This is proved as follows: letX = Ä−1x = ÄTx be the (constant) vector specifying the
pointx in body coordinates. Theṅx = Ä̇X = Ä̇ÄTx, sinceX is constant. The matriẋÄÄT

is skew-symmetric, since

d

dt
(ÄÄT) = Ä̇ÄT +ÄÄ̇T = Ä̇ÄT + (Ä̇ÄT)T = 0.

Now, if v= 〈v1, v2, v3〉 andu is an arbitrary vector, thenv× u = ṽu, whereṽ is the matrix

ṽ=

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 .
It follows that every skew-symmetric matrix, in particular the matrixÄ̇ÄT , has an associ-
ated rotation vector. We letω = ω(t) be the vector associated witḣÄÄT ; i.e.,ω(t) is the
instantaneous rotation vector at timet , andẋ = ω × x for any pointx fixed on the body.

In the previous paragraph,X was a constant vector (in body coordinates). WhenX varies
with time andx = ÄX, then the time derivative ofx in spatial coordinates is

ẋ = Ä̇X +ÄẊ = ω ×ÄX +ÄẊ = ω × x+ÄẊ. (1)

Arguing dually, we have

d

dt
(Ä−1x) = Ẋ = −(Ä−1ω)× X +Ä−1ẋ = Ä−1(−ω × x+ ẋ). (2)

The inertia matrix, momentum, and energy.For translational motion, the fundamental
equations of motion are thatp= mv andE = 1

2mv2, wherep,m, v, andE are momentum,
mass, velocity, and energy, respectively, andv2 = v · v= ‖v‖2. The physics of rotational
motion is analogous but more complicated. Most notably, the rotational analogue of the
scalar mass is a 3× 3 matrix I called theinertia matrix(or “inertia tensor”). The matrixI
changes with the body’s orientation: if we letJ denote the inertia matrix expressed in body
coordinates, thenJ is constant andI = ÄJÄ−1. It is known thatJ is positive definite
and self-adjoint (Hermitian) and, in particular, it is possible to choose the body coordinate
system so thatJ is a diagonal matrix with all entries on the diagonal positive. Likewise,I is
real, positive definite, and symmetric. The self-adjointness (or the fact thatJ is diagonal)
implies thatu · (I v) = (I u) · v, for all vectorsu, v, where “·” denotes the dot product.

The angular momentum is denotedL and is constant unless external torques are applied.
If T is the applied external torque thenL̇ = T. The fundamental equation of angular motion
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for rigid bodies is

L = Iω. (3)

This impliesω = I −1L, and so the instantaneous rate of rotation can be determined from
knowledge ofL. In the situation where there are no externally applied torques,L is constant;
however,ω is not constant in general since the inertia matrix changes with the body’s
orientation. This corresponds to the fact that spinning objects will be observed to wobble
when the rotation vector is not an eigenvector of the inertia matrix.

Taking the time derivative of Eq. (3) using the chain rule and Eqs. (1) and (2), we obtain
Euler’s equation for the derivative of the momentum:

L̇ = d

dt
(Iω) = d

dt
(ÄJÄ−1ω)

= ω × (ÄJÄ−1ω)+ÄJÄ−1(−ω × ω + ω̇)
= ω × (Iω)+ I ω̇

= ω × L + I ω̇. (4)

Solving forω̇ yields

ω̇ = I −1(L̇ − ω × Iω) = I −1(L̇ − ω × L). (5)

Taking the time derivative of Eq. (4), and again using the chain rule and Eqs. (1) and (2),
we obtain a formula for the second derivative of momentum:

L̈ = ω̇ × L + ω × L̇ + ω × I ω̇ − I (ω × ω̇)+ I ω̈. (6)

Using Eq. (4) to rewrite the third term gives

L̈ = ω̇ × L + 2ω × L̇ − ω × (ω × L)− I (ω × ω̇)+ I ω̈. (7)

Solving forω̈ gives

ω̈ = ω × ω̇ + I −1(L̈ − ω̇ × L − 2ω × L̇ + ω × (ω × L)). (8)

Differentiating (8) and simplifying gives the third derivative of rotation as

...
ω = 2ω × ω̈ − ω × (ω × ω̇)+ I −1[

...
L − 3ω × L̈ − 3ω̇ × L̇ − ω̈ × L + ω̇ × (ω × L)

+ 2ω × (ω̇ × L)+ 3ω × (ω × L̇)− ω × (ω × (ω × L))]. (9)

Equations (5), (8), and (9) will appear as higher order terms in our simulation algorithms
in Section 3.

The angular kinetic energy of a rigid body can be defined as

E = 1

2
L · ω. (10)

An alternative definition of energy can be given as follows. For nonzeroω, letn be the unit
vectorn = ω/‖ω‖ in the same direction asω. The angular inertia around the instantaneous
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axis of rotation is defined asI = n · I n. Note thatI is a scalar and a function of time. Then
clearly the energyE is equal to1

2I‖ω‖2, which is a familiar formula from the case of a
constant rotation axis.

For our purposes, the important aspect of energy is that it is constant in the absence of
external torques. To prove this, take the derivative of Eq. (10) to get

Ė = 1

2
(L · ω̇ + ω · L̇) = 1

2
((Iω) · (I −1(L̇ − ω × L))+ ω · L̇)

= 1

2
(ω · (L̇ − ω × L)+ ω · L̇) = ω · L̇ − 1

2
ω · (ω × L) = ω · L̇, (11)

where we have used Eq. (5) and the self-adjointness ofI . When there are no external torques,
L̇ = 0, and the energy is constant.

The inertial ellipsoid. Poinsot’s inertial ellipsoid is an ellipsoid rigidly attached to the
rigid body that provides a good qualitative description of the orientation and angular velocity
of the body. It is convenient to work mostly in body coordinates, especially because the
inertial matrix J in body coordinates is a constant, diagonal matrix. Accordingly, letν =
Ä−1ω be the instantaneous rotation vector expressed in body coordinates. Define the vector
ρ asρ = ν/(‖ν‖√I). The direction ofρ is the same asν, and its magnitude depends on
only its direction. Of course,n = √I Äρ and therefore

ρ · Jρ = 1. (12)

If we let J’s diagonal elements beJ11, J22, J33 andρ = 〈ρ1, ρ2, ρ3〉, Eq. (12) statesJ11ρ
2
1 +

J22ρ
2
2 + J33ρ

2
3 = 1. Therefore the set ofρ’s satisfyingρ · Jρ = 1 is an ellipsoid, called the

inertial ellipsoid.
Let F(ρ) = ρ · Jρ. The outward normal to the inertial ellipsoid at the pointρ is in the

direction of the gradient,∇F(ρ), of F atρ. Expressing the gradient in body coordinates,
we have

∇F = 〈2J11ρ1, 2J22ρ2, 2J33ρ3〉 = 2Jρ (13)

or, lettingLbd = Ä−1L be the angular momentum in body coordinates,

∇F = 2Ä−1IÄρ = 2

‖ω‖√IÄ
−1L = 2

‖ω‖√I Lbd =
√

2

E
Lbd. (14)

Thus the outward normal of the surfaceF = 1 atρ is in the direction of the momentum
vector.

Finally, since

ρ · Lbd = ω · L
‖ω‖√I =

2E√
2E
=
√

2E, (15)

the vectorρmust lie in the plane perpendicular to the momentum vector consisting of points
whose dot product withLbd equals

√
2E: this plane is called theinvariable plane. Under the

assumption of no externally applied torques,E andL are constant (in spatial coordinates),
and so the invariable plane is a spatially fixed, unvarying plane.



384 SAMUEL R. BUSS

FIG. 1. The inertial ellipsiod, the invariable plane, the polhode, and the herpolhode. The angular momentum
is downward, so the invariable plane is horizontal. The herpolhode is a curve traced out on the invariable plane,
and the polhode is a curve on the surface of the inertial ellipsoid.

Therefore the Poinsot construction has established so far that at any given instant in time,
the inertial ellipsoid is tangent to the invariable plane at the pointρ and the rotation axis
passes through the pointρ. Assuming there are no external torques, this means that the
inertial ellipsoid rolls along the invariable plane without slipping. The vectorρ traces out
a closed curve (loop) on the inertial ellipsoid, called thepolhode. It also traces out a curve
on the invariable plane; this curve is called theherpolhode.4 These features are illustrated
in Fig. 1.

There is one further fact about the polhode that we need for our constructions in Section 4;
namely, the polhode is equal to the intersection of the inertial ellipsoid with a second ellipsoid
which is also fixed in the body frame of reference. Equation (14) implies that the pointsρ

on the polhode satisfy‖∇F(ρ)‖2 = 2‖L‖2/E. From Eq. (13), we compute

‖∇F(ρ)‖2 = 4J2
11ρ

2
1 + 4J2

22ρ
2
2 + 4J2

33ρ
2
3 =

2‖L‖2
E

. (16)

The last equation defines an ellipsoid of course and sinceρ is in body coordinates, this
ellipsoid is fixed in the body frame of reference. Therefore the polhode is the intersection
of two ellipsoids fixed in the body frame; or more precisely, the polhode is one of the two
connected components of the intersection of the ellipsoids.

The intuition of the inertial ellipse rolling on the invariable plane will give us good insight
into why certain simulation methods work well or poorly. Furthermore, in Section 4 we
will use the polhode and invariable plane and the characterization of the polhode as the
intersection of two ellipsoids to develop a method for preserving energy during simulation
of rotation.

4 As Goldstein [13] remarks, this gives rise to the Jabberwockian statement: the polhode rolls without slipping
on the herpolhode lying in the invariable plane.
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3. SIMULATION METHODS

Our algorithms for simulation of the rotation of a rigid body use discrete time steps to
calculate the orientation and momentum of the body at timest1 < t2 < t3 < · · ·. Our goal
is to compute, at each instant of time, the orientation matrixÄi = Ä(ti ). We assume that
the angular momentumL is given exogenously; that is to say, the angular momentum (and
sometimes its derivatives) is given as an input and we do not compute it. For the experiments
reported in Section 6, there are no external torques and the angular momentumL is constant
and L̇ = L̈ = 0. In more general applications, the angular momentum will change with
applied torques and impulses—in some applications, the applied torques will depend on
the angular velocity or the angular acceleration; however, in any event, the computation
of applied torques is application dependent and beyond the scope of the present paper. We
writeL i , L̇ i , L̈ i , etc. for the externally given angular momentum and its derivatives at timeti .

Under the assumption that the angular momentum is known, then computing the orienta-
tionÄi at timei is sufficient to fully specify the rest of the parameters of the motion of the
rigid body, including angular velocity and angular acceleration, by use of Eqs. (5) and (8).
Since the body is rigid, the inertia matrix in body coordinates is a constant matrixJ, and in
world coordinates, the inertia matrix at timeti is Ii = Äi JÄ−1

i .
All the algorithms given below computeÄi+1 from Äi by first computing a “average

rotation” vectorω̄ and then setting

Äi+1 = Rhω̄Äi ,

whereh = ti+1− ti is the time increment andRhω̄ is the rotation matrix which corresponds
to the rotation vectorhω̄, a rotation around the axis ¯ω of h‖ω̄‖ radians. The algorithms
presented below do not require that the time intervalsti+1− ti are all equal, with the two
exceptions of the Adams–Bashforth–Moulton predictor–corrector method and the Simo–
Wong method. The latter method is easily modified to handle unequal time intervals.

The first-order method.We first discuss the (poorly performing) first-order method. For
this method, we just calculate the instantaneous velocity at timeti according to Eq. (3) and
apply this velocity during the entire time step:

THE FIRST-ORDER METHOD

ω̄ = ωi = I −1
i L i .

Update orientation asÄi+1 := Rhω̄ Äi .

It is easy to qualitatively analyze the behavior of the first-order method with the aid of the
inertial ellipsoid. Let us view the momentum as pointing straight down (in spatial terms):
then the invariable plane is horizontal and at timeti the inertial ellipsoid is above and
tangent to the invariable plane,Pi , at a point with body coordinatesρi . We call this point
the “lowest point” on the inertial ellipsoid. The rotation vectorωi passes through this lowest
point. When the inertial ellipsoid is rotated around this rotation vector, then clearly the new
lowest point on the inertial ellipsoid will be below the original invariable planePi .

Therefore, after one step of the first-order method, the next time step will find that
the lowest point on the inertial ellipsoid is lower than the previous lowest point. That is
to say,ρi+1 · Lbd > ρi · Lbd, under the assumption of constant momentum. By Eq. (15),
E = (ρ · Lbd/2)2, and this means that the energy has increased from one time step to the
next.
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Therefore, the first-order method will cause the energy to increase cumulatively and
monotonically; and the experiments below show that this increase in energy can be quite
quick and dramatic, even for relatively small rotation increments. Therefore the first-order
method is almost never an appropriate method, except in applications where the rotation
increment is very small or where accuracy and energy conservation are unimportant.

The second-order method.To improve on the poorly performing first-order method, we
try a second-order method. The average rotation is now estimated as ¯ω := ω + h

2ω̇, where
the instantaneous rate of change of the rotation vector is calculated using Eq. (5).

THE SECOND-ORDER METHOD

ωi = I −1
i L i .

ω̇i = I −1
i (L̇ i − ωi × L i ).

Let ω̄ :=ωi + h
2ω̇i .

Update orientation asÄi+1 := Rhω̄ Äi .

In terms of computational effort, the second-order method is only slightly slower than
the first-order method.

The experiments below show that the second-order method is substantially better than the
first-order method. However, the experiments still reveal a steady and monotonic increase
in the energy, and we therefore seek yet better methods.

The false third-order method.The obvious next method to try is a third-order method
based on the second time derivative of the angular velocity. We include this method for
completeness sake; however, the analysis of the “augmented second-order method” shows
that this method is not truly third order at all. This is confirmed by the experiments below,
which show that the false third-order method is not much better than the second-order
method.

FALSE THIRD-ORDER METHOD

ωi = I −1
i L i .

ω̇i = I −1
i (L̇ i − ωi × L i ).

ω̈ = ωi × ω̇i + I −1
i (L̈ i − ω̇i × L i − 2ωi × L̇ i + ωi × (ωi × L i )).

Let ω̄ := ω + 1
2ω̇h+ 1

6ω̈h2.

Update orientation asÄi+1 := Rhω̄ Äi .

Augmented second-order method.The justification for the second-order method and
the false third-order method above is based on using the derivatives of the rotation vectorω

to estimate the average rotation vector during the current time interval. However, since
rotation operators are not commutative, the average of the rotation vectors is not the equal
to the “effective” rotation vector: that is to say, merely taking the average of the applied
rotation vectors does not yield a rotation vector which correctly gives the overall rotation
of the body in the next time interval. Instead, one must also account for the order in which
the rotations are applied.

We give a simple calculation which illustrates this point and then will use this to obtain
an adjustment to the rotation vector which is second-order accurate. Suppose that a disk
is rolling along a line. The motion of the disk can be described as a series of infinitesimal
rotations: if the disk starts at positionp on the line and rolls at velocityv, then at timet , the
disk is rotating at a rate ofω radians per second around the point at positionp+ vt . Thus, the
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FIG. 2. The starting and stopping position of a disk which has rolled along the line. The rolling motion is
equivalent to rotation by angleϕ around the pointq. The pointsa, b are fixed points on the circumference of the
disk; the pointc is the center of the disk. The positions of the points after the disk has finished rolling are labeled
a′, b′, c′.

line along which the disk is rolling is also the line through which the instantaneous rotations
occur. After timet0 has elapsed, the disk has moved distancevt0 and rotatedϕ = ωt0 radians,
whereω = v/r . The overall motion of the disk during this time is equivalent to a rotation of
ωt0 radians around a fixed pointq as illustrated in Fig. 2. Thisq is an “effective average” of
the instantaneous rotations even though it does not lie on the line of instantaneous rotations.

In Fig. 2, the disk has moved a considerable distance, so the pointq is high above the
line of instantaneous rotations. We will be considering the net effect of rotations over a
short period of time, and in this case,q will be seen to be close to the line of instantaneous
rotations. We wish to give a second-order-accurate approximation for the position of the
point q. First, by symmetry, the pointq must lie above the midpointp+ 1

2vt0 of the line.
In fact, a first-order-accurate approximation forq is simplyq ≈ p+ 1

2vt0.
Let h be the height ofq above the line. From geometric considerations, if we letc and

c′ be the starting and ending positions of the center of the disk, the linescq andc′q both
make an angle ofϕ/2 with the vertical (refer to Fig. 2). Therefore,

tan(ϕ/2) = (1/2)vt0
r − h

= r θ

2(r − h)
.

Using the approximation tan(ϕ/2) ≈ ϕ/2+ ϕ3/24, and solving forh, we obtain

h ≈ ϕ2r

12− ϕ2
≈ 1

12
ϕ2r.

So, the position ofq is approximately a height of(1/12)ϕ2r above the midpoint of the line.
This estimate forh andq is clearly (better than) second-order accurate.

To transfer our calculation ofq’s position to the setting of 3D rotations, consider the
situation where the rigid body is undergoing an instantaneous rotation given by rotation
vectorω and its rate of change has been computed asω̇. We wish to compute the motion
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of the body over time intervalh as a pure rotation based on a rotation vector ¯ω. In the
second-order and the false third-order methods we approximated this with the rotation
vectorω + hω̇/2. Whenω̇ is parallel toω, this is fine; but in the situation wherėω is
perpendicular toω, we can give a better approximation by modeling the rotation with a
planar disk which is rolling with a total rotation ofh‖ω‖ traveling a total distanceh‖ω̇‖.
According to the analysis of a rolling plane, the net rotation should be approximated by
usingω + hω̇/2 plus a lateral displacement of1

12h‖ω‖ · h‖ω̇‖ (under the assumption that
ω andω̇ are perpendicular). To simultaneously handle the components ofω̇ perpendicular
to and parallel toω, one can use

ω̄ = ω + h

2
ω̇ + h2

12
ω̇ × ω.

Note how the cross-product neatly handles only the perpendicular components and correctly
chooses the displacement direction.

We still need to verify that modeling the 3D rotations in terms of rolling in the plane
does not introduce additional significant error and that the above approximation for ¯ω is
second-order accurate. This could be proved using a more careful proof than we gave above;
however, we shall not do this. Instead we shall obtain, in Section 5, a second, more general
proof of the above approximation based on general Lie algebras.

We thus have derived the following algorithm incorporating the third-order energy-
correction term:

AUGMENTED SECOND-ORDER METHOD

ωi = I −1
i L i .

ω̇i = I −1
i (L̇ i − ωi × L i ).

Let ω̄ := ωi + h
2ω̇i + h2

12(ω̇i × ωi ).

Update orientation asÄi+1 := Rhω̄ Äi .

The experiments reported below confirm that the inclusion of the third-order term signif-
icantly improves conservation of energy. The computational complexity of the augmented
second-order method is quite good: it requires only one more cross-product calculation than
the earlier second-order method.

True third-order method. By incorporating the above third-order correction, the correct
third-order simulation algorithm is obtained:

TRUE THIRD-ORDER METHOD

ωi = I −1
i L i .

ω̇i = I −1
i (L̇ i − ωi × L i ).

ω̈ = ωi × ω̇i + I −1
i (L̈ i − ω̇i × L i − 2ωi × L̇ i + ωi × (ωi × L i )).

Let ω̄ := ωi + h
2ω̇i + h2

6 ω̈i + h2

12((ω̇i + h
3ω̈i )× ωi ).

Update orientation asÄi+1 := Rhω̄ Äi .

Our experiments confirm that this method is third-order correct.
The difference between the computational complexity of the augmented second-order

method and that of the third-order method is one instance of multiplying a matrix and a
vector and one instance of vector cross-product.

The algorithm above includes a fourth-order correction term,h3

36ω̈i × ωi . This is included
only because(ω̇i + h

3ω̈i ) is an estimate for the average rate of change ofω over the time
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step. There is no other theoretical justification for this term, since there are other fourth-order
terms that could equally well be included. However, in our experiments we have found that
energy conservation is somewhat improved with inclusion of this term—in our experiments
this term reduces the energy drift by a factor of approximately one-third.

True fourth-order method.Section 5 derives a fourth-order-accurate method which in-
cludes the additional fourth-order correction termh3

24ω̈i × ωi into the calculation of ¯ω.

TRUE FOURTH-ORDER METHOD

ωi = I −1
i L i .

ω̇i = I −1
i (L̇ i − ωi × L i ).

ω̈ = ωi × ω̇i + I −1
i (L̈ i − ω̇i × L i − 2ωi × L̇ i + ωi × (ωi × L i )).

...
ωi = 2ωi × ω̈i − ωi × (ωi × ω̇i )+ I −1[

...
L − 3ωi × L̈ i − 3ω̇i × L̇ i − ω̈i × L i

+ ω̇i × (ωi × L i )+ 2ωi × (ω̇i × L i )+ 3ωi × (ωi × L̇ i )

−ωi × (ωi × (ωi × L i ))].

Let ω̄ := ωi + h
2ω̇i + h2

6 ω̈i + h2

12ω̇i × ωi + h3

24
...
ωi + h3

24ω̈i × ωi .
Update orientation asÄi+1 := Rhω̄ Äi .

Simo and Wong’s explicit algorithm.As discussed above, Simo and Wong [33] gave
several algorithms for simulation of rigid rotations. Their energy-preserving algorithm is
unfortunately implicit and requires an iterative use of Newton’s method in each time step;
in addition, it is much more difficult to implement than the algorithms above. Simo and
Wong also gave a couple of explicit algorithms which are much faster and easier to im-
plement. Their best explicit algorithm, ALGO C1 with γ = 1 andβ = 1, preserves an-
gular momentum exactly but does not exactly preserve energy, very similar to our own
algorithms.

SIMO–WONG EXPLICIT METHOD(γ = 1 AND β = 0)

ωi = I −1
i L i .

Let ν i = Ä−1
i ω.

Setai = (ν i − ν i−1)/h.
Let ν̄ := ν i + h

2ai .
Update orientation asÄi+1 := Äi Rhν̄ .

The Simo–Wang algorithm is not self-starting since it requires knowledge ofν i−1: thus
some other algorithm must be used in the first time step to start the simulation.

The essential idea of the Simo–Wong explicit algorithm is to use the current and previous
angular velocities to estimate the angular accelerationin body coordinatesand then to use
this to forward estimate the angular velocity as ¯ω. From the intuition of the Poinsot inertial
ellipsoid, it is clear that this will place the rotation vector ¯ω below the invariable plane.
This is in contrast to our third-order adjustment1

12(ω̇ × ω) introduced in the augmented
second-order method above, which pushes the rotation vector up above the invariable plane.
We therefore expect the Simo–Wong method to be worse than our second-order method
above: this is borne out by our experiments, which show that the Simo–Wong method has
accuracy almost identical to the accuracy of the simple first-order method.

McLachlan’s and Reich’s explicit symplectic algorithm.McLachlan [23] and Reich [31]
describe a simple explicit symplectic algorithm for simulation of rigid-body rotation,
which exactly preserves angular momentum. We present here an equivalent, but somewhat
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complicated, version of their algorithm based on the use of spatial coordinates instead of
body coordinates. The essential idea of this algorithm is that the rotation vector is computed
in body coordinates and then is separated into its components along the body’sx, y, andz
axes. One of these components of the rotation is performed and then the process is repeated
(a total of five times).

MCLACHLAN–REICH EXPLICIT SYMPLECTIC ALGORITHM

UPDATE[1, 1
2h]

UPDATE[2, 1
2h]

UPDATE[3, h]
UPDATE[2, 1

2h]
UPDATE[1, 1

2h]

where UPDATE[x, τ ] is the algorithm:

UPDATE[x, τ ] (x specifies one of the body’s principal axes)

ComputeLbd = Ä−1L, angular momentum in body coordinates.
Let ν := J−1Lbd.
Let ν̄ be the vector which is the component ofν in the direction of the principal axis

x of the body.
Update orientation asÄ := ÄRτ ν̄ .

Some explanation is in order here: the above algorithm updates the orientation in five
steps, each step being a rotation around one of the body’s principal axes. Accordingly, the
best implementation of the algorithm uses body coordinates. Thus each of the five rotations
involves calculating and applying a rotation in a two-dimensional subspace. Calculating
this rotation requires computing sinθ and cosθ for a rotation through angleθ , and doing
a 3× 2 by 2× 2 matrix multiplication to update the orientation. The body’s momentum
vector in body coordinates can be updated with a 2× 2 matrix multiplication (using the
transposed matrix). SinceJ is diagonal it is easy to compute the body rotation vector from
the body momentum vector.

Therefore, the computational cost of the McLachlan–Reich update step is dominated by
the time required to compute 10 trigonometric functions: i.e., five pairs of sines and cosines.
A commonly used way to reduce the computational cost is to use Cayley transforms, which
use sinx ≈ t/(1+ t2/4) and cosx ≈ (1− t2/4)/(1+ t2/4)—this has the advantage of
preserving the matrix orthogonality as well as the symplectic property of the algorithm.
Note that the Cayley transforms give third-order-accurate approximations to sinx and cosx.

The algorithm chooses an arbitrary ordering of the axes to determine the order in which the
rotations are applied. (We used the 1–2–3 ordering above.) Our experiments (not all reported
below) found that the ordering of the axes made a large difference in the performance of
the algorithm. Experimental results are reported below for both the overall best-performing
ordering (2–3–1) and the overall-worst performing ordering (1–2–3) of the axes.

One of the common benefits claimed for symplectic algorithms is long-term stability,
e.g., as measured by fluctuating energy which never leaves a bounded region (see, e.g., [3]).
This claim was amply borne out by our experiments.

Yoshida [35] gives a general method of transforming an-order explicit symplectic method
into an (n+ 2)-order explicit symplectic method. Forn = 2, this coincides with earlier
constructions of Neri and Forest–Ruth [9] and allows the above second-order method to be
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transformed into a fourth-order method, albeit at a substantial increase in computational
cost.

The basic algorithm can be described as follows: letx0 = 1/(2− 21/3) and letx1 =
−21/3/(2− 21/3) (notex1 < 0 and 2x0+ x1 = 1). For a fourth-order-accurate update for
time steph, first run the second-order symplectic method for a time step ofx0h, then again
for a time step ofx1h, and then once again for a time step ofx0h. This can be streamlined
a little into an update procedure that contains 13 updates around the principal body axes:

MCLACHLAN–REICH FOURTH-ORDER EXPLICIT SYMPLECTIC ALGORITHM

UPDATE[1, 1
2x0h]

UPDATE[2, 1
2x0h]

UPDATE[3, x0h]
UPDATE[2, 1

2x0h]
UPDATE[1, 1

2(x0+ x1)h]
UPDATE[2, 1

2x1h]
UPDATE[3, x1h]
UPDATE[2, 1

2x1h]
UPDATE[1, 1

2(x0+ x1)h]
UPDATE[2, 1

2x0h]
UPDATE[3, x0h]
UPDATE[2, 1

2x0h]
UPDATE[1, 1

2x0h]

Runge–Kutta and Adams–Bashforth–Moulton methods.Our experiments compare the
above methods also with the standard fourth-order Runge–Kutta method and the Adams–
Bashforth predictor/Adams–Moulton corrector (AB–AM) method. These two methods are
very widely used and for Euclidean-valued functions are well known to be fourth-order
accurate.

To implement Runge–Kutta and predictor–corrector methods for the sphere, one must
be able to take weighted averages of rotations. To do this, we expressed the rotations as
quaternions and then averaged them in Euclidean 4-space.5 Our experiments show that these
two methods are only second-order accurate in simulating rigid rotations: the reason for
this is that the sphere is not a linear space.

Recently, a number of authors, including Munthe-Kaas [26, 27], Crouch and
Grossman [5], and Marthinsen and Owren [21, 29], have given more sophisticated Runge–
Kutta and predictor–corrector algorithms which are applicable to differential equations on
Lie manifolds. We have not tried implementing these algorithms for rigid-body rotations.
These Lie manifold Runge–Kutta and predictor–corrector algorithms are multistep, similar
to the standard (Euclidean) Runge–Kutta algorithms. The standard fourth-order Runge–
Kutta algorithms require four rotations per update step, and therefore they are somewhat
slower than our new algorithms, which need to perform only one rotation per step (see
the discussion about runtimes below). We would expect similar computational costs for
the fourth-order Lie manifold Runge–Kutta algorithms. However, an advantage of the Lie
manifold Runge–Kutta methods is that they could presumably be implemented so as to
accommodate the situation where momentum is varying, say in response to external forces,

5 We experimented also with using the spherical weighted averages introduced by Buss and Fillmore [2], but this
gave only a very small improvement relative to the additional computation cost and we abandoned this approach.
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without needing to knoẇL, L̈, and
...
L explicitly. In comparison, our own algorithms, based

on Taylor-series expansions, can accommodate changes in momentum but only ifL̇, L̈, and
...
L are known or can be calculated.

Comparative runtimes.We now compare the runtimes of some of the above algorithms.
The first-, second-, third-, and fourth-order algorithms are most efficiently implemented by
converting the momentum vector into body coordinates, since this means that the inertia
matrix can be kept as a diagonal matrix. Once they compute the average rotation vector ¯ω,
the rotational update of the orientation matrix may be performed in body coordinates. The
straightforward implementation of the rotation requires 2 trigonometric functions, 1 square
root, 1 division, and 21 multiplications. In addition to this rotation, the first-order method
uses 15 multiplications, the second-order uses 27 multiplications, the augmented second-
order uses 36 multiplications, the third-order uses 61 multiplications, and the fourth-order
uses 99 multiplications. All these counts assume that the derivatives of the momentum
are zero; otherwise, additional cross-product calculations would be needed, increasing the
numbers of multiplies. (Since the symplectic algorithms we are comparing with make
no provision for the rate of change of the momentum, it seems only fair to assume the
momentum is fixed.)

The symplectic algorithms do rotations only around principal axes, which reduces the
computational cost of the rotations, but they do many more rotations per time step. A
single step of the McLachlan–Reich second-order method uses 85 multiplications and
10 trigonometric function evaluations. A single step of the symplectic fourth-order method
uses 221 multiplications and 26 trigonometric function evaluations.

The energy-preservation procedure discussed in the next section can be optimized to
use 32 multiplications, 1 division, 3 square roots, and 1 rotation. We include its relative
computational cost in Table I too.

We experimentally determined (on a Pentium II) that a sine or cosine evaluation costs
about the same as 8 multiplications, a square root costs the same as 5 multiplications,
and a division costs the same as 3 multiplications. This allows us to calculate the relative
computational costs of a single step of each algorithm. The values in Table I are scaled so that
the third-order method with energy preservation has unit computational cost per step. The
other computational costs are scaled accordingly (smaller numbers for faster algorithms).
Of course, one should treat the relative computational costs as only approximations since,
in practice, minor differences in software and hardware configurations can cause significant
changes in runtimes.

TABLE I

Relative Computational Costs of Various Algorithms

Without energy With energy
Base algorithm preservation preservation

1st order 0.30 0.77
2nd order 0.37 0.83
Augmented 2nd order 0.41 0.87
3rd order 0.54 1.00
4th order 0.73 1.19
Symplectic 2nd order 0.84 1.20
Symplectic 4th order 2.19 2.65
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If the symplectic algorithms are implemented with Cayley transforms to avoid the use
of trigonometric functions, their runtimes improve to be about two-thirds of the runtimes
reported above. This makes sense especially for the second-order algorithm since it is
still second-order accurate with the use of Cayley transforms. For instance, the symplectic
second-order method with Cayley transforms would have relative computational cost values
of 0.53 and 0.98 (with and without the energy preservation, respectively).

Because they are multistep, the standard Euclidean Runge–Kutta algorithms have run-
times that are somewhat worse than even our fourth-order method. The Runge–Kutta’s
runtime is dominated by the time needed to perform four rotations, so its relative cost
would be about 1.20 without energy preservation and about 1.67 with energy preservation.
These relative cost levels do not include the cost of averaging four rotation values for the
final rotation substep. The fourth-order Lie manifold Runge–Kutta algorithm of [26, 28]
needs to use five rotations. Both the Euclidean Runge–Kutta and the Lie manifold Runge–
Kutta algorithms can be improved as all but the last rotation update can be applied to a
single vector—further speed improvements for rotation updates can be obtained using the
Rodrigues formula or quaternions. Thus, the computation cost of the Runge–Kutta algo-
rithms is only slightly worse than that of our fourth-order algorithm and is significantly
better than that of the fourth-order symplectic algorithm.

4. PRESERVATION OF ENERGY

In this section we introduce a simple and computationally quick method of preserving
energy. The scenario is as follows: we presume that we know the energyE = Ei of the
rotating object, at timeti , which can be computed from the orientationÄi and the momentum
by Eq. (10). To preserve energy, we wish the body to have the same energy at the next time
stepti+1 (perhaps updated according to Eq. (11) if external torques are applied). Then one
of the above methods is used to compute an orientationÄi+1 at timeti+1. Of course, none
of the above methods preserve energy, so in general, the energy at timeti+1, as given by
Eq. (10), will be slightly different from the desired energyE. Our goal is to slightly perturb
the orientationÄi+1 so as to reorient the body to have energy exactly equal toE. To avoid
confusion, we will temporarily call this perturbed orientationÄ′i+1, but in the end we set
Äi+1 := Ä′i+1.

Recall from the earlier section that the pointρ lies on the Poinsot inertial ellipsoid and the
outward normal of the ellipsoid atρ is parallel to the momentum vector (see the discussion
around Eq. (14)). Energy is correctly preserved if and only if the pointρ remains on the
correct polhode curve. The idea behind the energy-preservation perturbation is as follows:
first compute the pointρi+1 on the inertial ellipsoid from the momentumL = L i+1 and the
orientationÄi+1. Then find a pointρ′i+1 which lies on the correct polhode and is close to
ρi+1. Finally, reorient the rigid body so that the surface normal vector of the Poinsot inertial
ellipsoid at the pointρ′i+1 is parallel to the momentum vector.

The only nonstraightforward part is how to choose the pointρ′i+1. For this, recall that the
polhode is the intersection of the two ellipsoids

J11ρ
2
1 + J22ρ

2
2 + J33ρ

2
3 = 1

and

J2
11ρ

2
1 + J2

22ρ
2
2 + J2

33ρ
2
3 =
‖L‖2
2E

.
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The level surfaces of the left-hand sides of these equations have normals in the directions of
〈J11ρ1, J22ρ2, J33ρ3〉 and〈J2

11ρ1, J2
22ρ2, J2

33ρ3〉. Taking the cross-product and multiplying
by ρ1ρ2ρ3, we obtain the vector〈

J22J33(J33− J22)ρ
2
2ρ

2
3ρ1, J11J33(J11− J33)ρ

2
1ρ

2
3ρ2, J22J11(J22− J11)ρ

2
1ρ

2
2ρ3
〉
,

which is orthogonal to the two ellipsoid normal vectors. Holdingρi+1 = 〈ρ0,1, ρ0,2, ρ0,3〉
constant, we letα1, α2, α3 be the three values

α1 = J22J33(J33− J22)ρ
2
0,2ρ

2
0,3, α2 = J11J33(J11− J33)ρ

2
0,1ρ

2
0,3,

α3 = J22J11(J22− J11)ρ
2
0,1ρ

2
0,2.

and define

h(ρ1, ρ2, ρ3) = α1ρ
2
1 + α2ρ

2
2 + α3ρ

2
3.

The level surfaces ofh are hyperboloids and the pointρi+1 lies on the surface defined by

{〈ρ1, ρ2, ρ3〉 : h(ρ1, ρ2, ρ3) = h(ρ0,1, ρ0,2, ρ0,3)}.

From the definition ofh, the level surface hyperboloids intersect the polhode perpendicu-
larly.

Now we can define the pointρ′i+1 by solving three simultaneous linear equations

J11ρ
2
1 + J22ρ

2
2 + J33ρ

2
3 = 1,

J2
11ρ

2
1 + J2

22ρ
2
2 + J2

33ρ
2
3 = ‖L‖2/(2E),

α1ρ
2
1 + α2ρ

2
2 + α3ρ

2
3 = h(ρ0,1, ρ0,2, ρ0,3),

for the valuesρ2
i . Then setρ′i+1 equal to〈±

√
ρ2

1,±
√
ρ2

2,±
√
ρ2

3〉, where the signs of the
square roots are chosen to agree with the signs ofρ0,1, ρ0,2, ρ0,3.

The calculation ofρ′i+1 has the effect of moving the pointρi+1 along the surface of the
hyperboloid at more-or-less right angles to the polhode—therefore little error is introduced
by this process. The most computationally difficult part of computingρ′i+1 is the calcula-
tion of the three square roots. The three simultaneous linear equations are easily solved,
especially since the first two equations are fixed and thus pivoting and Gaussian elimination
can be performed with them ahead of time.

The overall algorithm for conservation of energy is as follows:

Input:Äi+1, MomentumL = L i+1, EnergyE.
Computeωi+1 = I −1

i+1L i+1 andν = Ä−1
i+1ωi+1.

Computeρi+1 = ν

‖ν‖√I whereI = ν · Jν.

Solve forρ′ = ρ′i+1 as above.
Let τ = Äi+1〈J11ρ

′
1, J22ρ

′
2, J33ρ

′
3〉, a vector normal to the inertial ellipsoid at the

pointρ′ (in spatial coordinates).
Let ω be the rotation vector in the direction ofτ × L with magnitude equal to the

angleθ between the two vectors:ω = θτ × L/‖τ × L‖.
LetÄ′i+1 := RωÄi+1.
SetÄi+1 := Ä′i+1.
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In the next to last step, the rotation vectorω has been chosen to makeRω be the rotation
which alignsτ to be parallel toL.

It should be noted that there is no guarantee that the linear equations forρ′ will be
solvable. For the free rigid body this can happen when the rotation vector is fixed, so there
is no “wobble” or energy loss anyway. In addition, it can happen when very large rotations
occur in a single step: in practice, we have never seen this condition arise, but it could be
dealt with by letting the perturbation consist of a tilt toward or away from the principal axis
which has either the highest or lowest moment of inertia.

5. HIGHER ORDER METHODS OVER LIE ALGEBRAS

We shall now give a second derivation of the nonlinear adjustment termh2

12(ω̇i × ωi )

which was included in the calculation of the ¯ω in the augmented second-order and in the
true third-order methods. This second derivation will be based on the (inverse) exponential
function on Lie algebras, and therefore it applies in the general setting of Lie algebras where
ω(t) can be replaced by any time-dependent member of the Lie algebra. Simultaneously,
we derive the nonlinear adjustment termh

3

24ω̈i × ωi for the fourth-order method and show
that there is no nonlinear adjustment needed with a term involvingωi × (ω̇i × ωi ).6

To move to the setting of a Lie algebra, we write [u, v] for u× v. We also write [u, v,w]
for [u, [v,w]], [u, v,w, x] for [u, [v, [w, x]]], etc. Adjointsad(u) are defined as usual, with
ad(u)(v) = [u, v]. We write (ad(u))n for then-fold iteration ofad(u). Thus if f (x) is a
polynomial or a power series,f (ad(u)) denotes an operator on the Lie algebra. We shall
work with right-invariantLie algebras, as they are more elegant for our setting. We follow
roughly the methods and notation of [28].

The reader who is unfamiliar with Lie algebras can translate the above notation into the
setting of rigid-body rotations: the elementsX,Y, Z of the Lie algebra are merely rotation
vectors. The associated Lie group is the groupSO(3) of orientations of a rigid body. The
notation exp(Z) denotes the operationRZ of rotating the rigid body according to the rotation
vectorZ.

SupposeW(t) is a time-varying Lie algebra element. (In the setting of rigid-body rotations
W is ω(t).) Let W0 denoteW(0), Ẇ0 denoteẆ(0), Ẅ0 denoteẄ(0), etc. Then we can
approximateW(t) with its Taylor series

W(t) = W0+ t Ẇ0+ t2

2
Ẅ0+ t3

3!

...
W0+ O(t4).

Leth > 0. We wish to find a fixed Lie algebra elementZ such that exp(h · Z) is equivalent
to the result of applying the Lie algebra elementW(t) over the time intervalt = 0 to t = h.
This Z corresponds to the ¯ω of our first- through fourth-order algorithms. We can express
exphZ as a “product integral,” namely the limit atN →∞ of

0∏
i=N−1

exp((h/N)W(ih/N)).

6 Our original proof was based on the Baker–Campbell–Hausdorf formula. The referees suggested the more
direct proof, based on the (inverse) exponential function, which is presented below.
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We writey(h) for the limit of this product. The value ofZ is of course a function of the time,
Z = Z(h). We writeY(h) = h · Z(h) and then we have that exp(Y(h)) = y(h). Taking first
derivatives gives

(d exp)Y(t)(Y
′(t)) = y′(t), (17)

or, using the inverse exponential function, we write

Y′(t) = (d exp)−1
Y(t)(y

′(t)). (18)

From the definition ofy(t), we have the following power series fory′(t) = W(t):

y′(t) = W0+ t Ẇ0+ 1

2
t2Ẅ0+ 1

3!
t3 ...W0+ · · · . (19)

SinceY(0) = 0, we writeY(t) as a power series

Y(t) = tY0+ 1

2
t2Y1+ 1

3!
t3Y2+ 1

4!
t4Y3+ · · · , (20)

and its derivative isY′(t) = Y0+ Y1t + 1
2Y2t2+ 1

3! Y3t3+ · · ·. In addition, we have the
power series for(d exp)Y(t) and(d exp)−1

Y(t) (c.f. [28]),

(d exp)Y(t) = 1+ 1

2
ad(Y(t))+ 1

3!
(ad(Y(t)))2+ 1

4!
(ad(Y(t)))3+ · · · (21)

and

(d exp)−1
Y(t) = 1− 1

2
ad(Y(t))+ 1

12
(ad(Y(t)))2− 1

720
(ad(Y(t)))4+ · · · , (22)

where the general term in the final power series is(Bq/q!)(ad(Y(t)))n for n = 0, 1, 2, 4, 6,
8, . . . whereBq are the Bernoulli numbers.

We can now calculateY0,Y1,Y2, . . . by substituting the above power series into either
Eq. (17) or Eq. (18), then expanding both sides of the equation as a power series, and
equating coefficients of common powers oft . We illustrate this procedure for the lower
order terms using Eq. (17).

First, consider the constant terms on both sides of (17). On the right-hand side it is just
W0 of course. On the left-hand side, it is immediately seen to be justY0. ThereforeY0 = W0.

Second, consider the coefficient oft on both sides of Eq. (17). Again on the right-hand
side it is justẆ0. On the left-hand side, a quick calculation shows it to beY1− 1

2[Y0, X0].
SinceY0 = X0, this left-hand side equals justY1. Equating the two sides givesY1 = X1.

Third, consider the coefficient oft2. On the left-hand side, it equals

1

2
Y2+ 1

2

(
[Y0,Y1] + 1

4
[Y1,Y0]

)
+ 1

6
[Y0,Y0,Y0] = 1

2
Y2− 1

4
[Y1,Y0].

Setting this equal to the coefficient1
2Ẅ0 on the right-hand side givesY2 = Ẅ0+ 1

2[Ẇ0,W0].
From the above we get that a second-order-accurate formula forZ is Z(h) = Y(h)/h =

Y0+ 1
2Y1h+ 1

3! Y2h2+ O(h3), which equals

Z = W0+ h

2
Ẇ0+ h2

6
Ẅ0+ h2

12
[Ẇ0,W0] + O(h3).
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This has the same extra term as was introduced in Section 3 in the augmented second-order
and the true third-order algorithms, proving the correctness of the third-order
algorithm.

Continuing the above style of computations by hand yieldsY3 = ...
W0+ [Ẅ0,W0]. For

higher order terms the number of terms grows exponentially and it is more convenient to
use computer algebra systems. We coded some custom rewrite rules in Mathematica to
compute these terms; alternatively the symbolic computation Matlab packageDiffman [7]
can be used. The next few results are

Y4 = ....
W0+ 3

2
[
...
W0,W0] + [Ẅ0, Ẇ0] + 1

2
[Ẇ0, Ẇ0,W0] − 1

6
[W0, Ẅ0,W0]

− 1

6
[W0,W0, Ẇ0,W0],

Y5 = .....
W0+ 5

2
[
...
W0, Ẇ0] + 2[

....
W0,W0] + 2[Ẅ0, Ẇ0,W0] + 1

2
[Ẇ0, Ẅ0,W0]

− 1

2
[W0,

...
W0,W0] − 1

2
[W0,W0, Ẅ0,W0] − [W0, Ẇ0, Ẇ0,W0].

This immediately gives higher order formulas forZ; namely, for sixth-order accuracy, we
can use as the approximation forZ:

Z = W0+ h

2
Ẇ0+ h2

6
Ẅ0+ 1

12
h2[Ẇ0,W0] + h3

24

...
W0

+ h3

24
[Ẅ0,W0] + h4

120

....
W0+ h4

80
[
...
W0,W0] + h4

120
[Ẅ0, Ẇ0]

+ h4

240
[Ẇ0, Ẇ0,W0] − h4

720
[W0, Ẅ0,W0] − h4

720
[W0,W0, Ẇ0,W0]

+ h5

720

.....
W0+ h5

288
[
...
W0, Ẇ0] + h5

360
[
....
W0,W0] + h5

360
[Ẅ0, Ẇ0,W0]

+ h5

1440
[Ẇ0, Ẅ0,W0] − h5

1440
[W0,

...
W0,W0] − h5

1440
[W0,W0, Ẅ0,W0]

− h5

720
[W0, Ẇ0, Ẇ0,W0] + O(h6).

Unfortunately, the number of terms apparently grows exponentially with the degree of
the algorithm: so far the only cases where a term was unexpectedly dropped involved the
[W0, Ẇ0,W0] term from the fourth-order-accurate algorithm, and the term [W0,W0,W0, Ẇ0,

W0] from the sixth-order algorithm.
To the best of our knowledge, the above-derived higher order methods are novel; however,

they are closely related to the Fer [8] and Magnus [20] expansions: in fact, both expansions
are based on the same “product integral” as we used above. Recently, the use of the Fer and
Magnus expansions for numerically solving differential equations has been investigated
by a number of people [16–18, 28, 36]. Reference [28] discusses the use of graded Lie
algebras and implementation issues for deriving Lie bracket identities in computational
software.
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6. EXPERIMENTAL RESULTS

We ran a number of experiments to compare the performance of the various simulation
methods described above. All the experiments reported here were performed on a freely
moving rigid body with no externally applied forces. The rigid body was a rectangular
prism of uniform density with ratio of dimensions1 : 4 : 18. In thereported experiments
the body was started with momentum placed at an angle of 45 degrees to the two principal
axes of least angular momenta. The1 : 4 : 18length ratio gives the dimensions in the third,
the first, and the second axes (in that order).

Our first set of experiments measured the conservation of energy for the algorithms
described in Section 3. The results are reported in Tables II and III. In all the experiments,
the rigid body was initialized with energy equal to 82.1053 and the closer energy values are
to this value, the better the simulation preserved energy. The mean rotation values are the
average amount of rotation performed in a single simulation step by a perfect algorithm.

Examination of the figures reveals that as far as energy preservation is concerned, the
algorithms fall into four groups: Group-0 has the McLachlan–Reich symplectic algorithms
and these are by far the best at energy conservation. (The fourth-order McLachlan–Reich
algorithm was also tested and did even better at energy conservation, but the results are not
reported in the tables.) The augmented second-order, the third-order, and the fourth-order
algorithms we call Group-1 and these performed relatively well. The Group-2 algorithms
are the second-order, the false third-order, the Runge–Kutta, and the AB–AM predictor–
corrector algorithms: these did passably well, but definitely performed less well than the
Group-1 methods. Finally, the Group-3 algorithms, including the first-order and the Simo–
Wong explicit algorithms, are quite poor at energy conservation.

In general, all the nonsymplectic algorithms steadily gained energy during the simu-
lations, with the sole exception of the augmented second-order algorithm, which usually
steadily lost energy. Since momentum is conserved, steadily gaining energy meant that the
rigid body came to rotate more-and-more smoothly, with less and less wobble. For the fixed

TABLE II

Energy after N Steps: Small Steps

N = 105 N = 8× 105 N = 4× 105 N = 2× 105 N = 105

h = 0.0001 h = 0.0005 h = 0.001 h = 0.002 h = 0.004
Algorithm θ = 0.41◦ θ = 2.0◦ θ = 4.1◦ θ = 8.1◦ θ = 16.3◦

1st order 109.663 150.0 150.0 150.0 150.0
2nd order 82.1054 82.5637 85.8535 115.058 150.0
False 3rd order 82.1054 82.6471 86.5584 121.164 150.0
Augmented 2nd order 82.1053 82.0749 81.8636 80.2222 69.6595
3rd order 82.1053 82.1154 82.1866 82.7686 88.0158
4th order 82.1053 82.1053 82.1056 82.1177 82.4979
Simo–Wong explicit 109.661 150.0 150.0 150.0 150.0
McLachlan–Reich 1–2–3 82.1051 82.1028 82.1040 82.0482 81.8740
McLachlan–Reich 2–3–1 82.1053 82.1053 82.1053 82.1054 82.1057
Runge–Kutta 82.1053 82.3810 84.3364 101.328 149.811
AB–AM 82.1055 82.5159 85.4372 111.305 149.999

Note.Initial energy was 82.1053. The highest possible energy is 150.0 and represents complete failure of energy
preservation.N= number of steps;h= time interval;θ =mean rotation.
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TABLE III

Energy after N Steps: Large Steps

N = 1000 N = 500 N = 250 N = 200
h = 0.004 h = 0.008 h = 0.016 h = 0.020

Algorithm θ = 16.3◦ θ = 32.5◦ θ = 65.1◦ θ = 81.4◦

Augmented 2nd order 81.9528 81.0002 76.3078 74.5092
3rd order 82.1603 82.6283 89.2196 101.390
4th order 82.1092 82.2288 86.0610 94.9191
McLachlan–Reich 1–2–3 81.9601 82.0779 79.3202 77.6101
McLachlan–Reich 2–3–1 82.1057 82.1069 82.1083 82.1063
Runge–Kutta 83.4575 91.8125 132.808 149.855
AB–AM 84.4914 101.429 149.736 149.999

Note.Initial energy was 82.1053. The highest possible energy is 150.0 and represents complete failure
of energy preservation.N= number of steps;h= time interval;θ =mean rotation.

momentum, the maximum value for the energy is 150.0, and values near 150.0 represent a
complete failure of energy preservation.

Table II shows the results of simulations with relatively small simulation steps, with mean
rotation per step between 0.41 degrees and 16.3 degrees. The first column shows the results
of simulating 10 seconds of rotation, whereas the other columns all show the results of 400
seconds of simulation. (The reason for the shorter simulation time in the first column is
that otherwise it was essentially impossible to get any of the poorest algorithms to have any
meaningful preservation of energy at all.) Here we see that the Group-3 algorithms exhibit
substantial degradation in energy preservation, while the other algorithms do quite well. The
Group-0 and Group-1 algorithms performed dramatically better than the other algorithms.
The Group-1 algorithms performed consistently better than the Group-2 algorithms in all
these experiments—this is shown particularly dramatically in the last two columns of Table
II where the mean rotations are between 8.2 degrees and 16.3 degrees per simulation step.

These results are meaningful also because the Group-1 algorithms and, to a lesser extent,
the Group-0 algorithms are computationally much faster and easier to code than the Group-2
algorithms.

Table III shows the results of similar experiments for large simulation steps for some of
the Group-0, Group-1, and Group-2 algorithms. For these experiments, 4 seconds of motion
of the same rigid body was simulated, with mean rotations ranging from 16.3 degrees to
81.4 degrees per time step. Once again the Group-0 methods were outstanding at energy
conservation. Also, as expected, the Group-1 algorithms were consistently and substantially
more accurate in terms of energy conservation than the Group-2 algorithms.

Table III was designed to show the ranges in which the augmented second-order, the third-
order, and the fourth-order algorithms give reasonable energy conservation. However, the
McLachlan–Reich method had good energy stability over a much longer period of time. We
repeated the experiment from the last column of Table III except withN= 200,000,000.
Even with the large step size of 81.4◦ per step on average, the energy after 200 million
simulation steps was equal to 75.2587 (for the 1–2–3 ordering) and 82.1218 (for the 2–3–
1), which represents a very modest drift in energy.

Our second set of experiments measured the relative efficiency of the simulation methods.
In each experiment, we choose a total timeT and a target accuracyε: we then calculated,
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for each method, what step sizeh is sufficient for the simulation to yield an answer which is
correct to within an errorε in orientation. To be precise, we actually calculated the number
of steps,N, needed—of courseh = T/N. The results of our experiments are reported in
Tables IV and V. Each algorithm is tested both with and without the use of the energy
preservation method of Section 4. The tables report bothN and the mean rotation angle,θ ,
during each step (the values ofθ are expressed as degrees). The error valueε is measured
in terms of radians however; for example, an error ofε = 10−3 means that the final error in
orientation was less than 1/1000 of a radian.

In order to analyze the data in Tables IV and V, it is useful to group the simulation methods
into three classes, based on their order of accuracy. Group A is the fourth-order-accurate
algorithms. Group B contains the third-order-accurate methods, of which the third-order
method is the only representative (however, the third-order method with energy preservation
showed better than fourth-order accuracy and belongs to Group A). Group C contains the
second-order-accurate methods, namely, the second-order method, the false third-order
method, the augmented second-order method, the McLachlan–Reich symplectic method,
the Runge–Kutta method, and the AB–AM predictor–corrector method. In some cases, the
McLachlan–Reich algorithm did sufficiently well to be categorized as a Group B algorithm.
Group D contains the first-order-accurate methods, namely, the first-order method and the
Simo–Wong explicit method. Generally, the Group A methods outperform the Group B
methods, which outperform the Group C methods, which outperform Group D.

The Group D methods performed poorly in comparison to the Group C methods. In fact,
without energy preservation, the Group D methods failed to give enough accuracy to even
measure their relative performance. With energy preservation, they did much better and,
in fact, using the energy preservation caused the Group D algorithms to act like second-
order-accurate algorithms. In column 1 of Table IV, we see that the first-order method with
energy preservation could keep the overall error rate to 0.001 after 514 steps, with a mean
rotation ofθ = 3.17 degrees in each step. From column two, we see that the same algorithm
needed 15,356 steps, with a mean rotation of 0.11 degrees, to perform the same simulation
with an accuracy of 10−6. The Simo–Wong algorithm performed almost identically to the
first-order algorithm.

The Group C algorithms all acted like second-order-accurate systems but still encom-
passed a fairly wide range of performance levels. The worst performance came from the
AB–AM method without energy preservation. The AB–AM method with energy preserva-
tion, the Runge–Kutta methods, and the second-order methods had very similar performance
levels as measured by the number of stepsN. Finally, the augmented second-order method
was the most efficient method of Group C, requiring only about one-half as many steps
as the other Group C algorithms. For example, in the second column of Table IV, we see that
the augmented second-order method can achieve in 6513 steps the same accuracy that
the Runge–Kutta method can achieve in 12,771 steps. Actually, this grossly under-
states the performance advantage of the augmented second-order method: the running time
to carry out a single Runge–Kutta step is approximately three times as long as the time to
compute a single step of the augmented second-order method. Thus, roughly speaking, the
augmented second-order method is approximately six times as efficient as the Runge–Kutta
method when execution speed is taken into account. Similarly, even the (nonaugmented)
second-order method is approximately three times as efficient as the Runge–Kutta method.

The worst-performing McLachlan–Reich implementation, with axis ordering 1–2–3,
acted very much like the second-order algorithms of Group C. It also tended to gain in
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TABLE IV

Number of Steps (N) and Mean Rotation in Degrees (θ) Required to Achieve a Given Accuracy

T = 0.4 T = 0.4 T = 4.0
Algorithm ε = 0.001 ε = 10−6 ε = 0.001

1st order N > 20,480 N > 20,480 N > 20,480
(nonpreserving) failed failed failed
1st order N = 514 N = 15,356 N = 16,216
(energy-preserving) θ = 3.17 θ = 0.11 θ = 1.00
2nd order N = 387 N = 11,509 N = 14,546
(nonpreserving) θ = 4.22 θ = 0.14 θ = 1.12
2nd order N = 364 N = 11,500 N = 11,505
(energy-preserving) θ = 4.48 θ = 0.14 θ = 1.41
False 3rd order N = 412 N = 12,768 N = 15,056
(nonpreserving) θ = 3.95 θ = 0.13 θ = 1.08
False 3rd order N = 404 N = 12,784 N = 12,773
(energy-preserving) θ = 4.04 θ = 0.13 θ = 1.27
Augmented 2nd order N = 195 N = 6513 N = 5573
(nonpreserving) θ = 210 θ = 0.25 θ = 2.92
Augmented 2nd order N = 210 N = 6617 N = 6616
(energy-preserving) θ = 7.78 θ = 0.25 θ = 2.46
3rd order N = 82 N = 789 N = 3661
(nonpreserving) θ = 20.09 θ = 2.06 θ = 4.45
3rd order N = 37 N = 209 N = 652
(energy-preserving) θ = 45.17 θ = 7.83 θ = 25.00
4th order N = 53 N = 236 N = 1304
(nonpreserving) θ = 31.29 θ = 6.93 θ = 12.49
4th order N = 39 N = 219 N = 688
(energy-preserving) θ = 42.85 θ = 7.47 θ = 23.69
Simo–Wong explicit N > 20,480 N > 20,480 N > 20,480
(nonpreserving) failed failed failed
Simo–Wong explicit N = 513 N = 15,356 N = 16,209
(energy-preserving) θ = 3.17 θ = 0.11 θ = 1.00
McLachlan–Reich 1–2–3 N = 514 N = 16,250 N = 16,131
(nonpreserving) θ = 3.17 θ = 0.10 θ = 1.01
McLachlan–Reich 1–2–3 N = 193 N = 6063 N = 5210
(energy-preserving) θ = 8.48 θ = 0.27 θ = 3.12
McLachlan–Reich 2–3–1 N = 39 N = 1192 N = 1191
(nonpreserving) θ = 42.86 θ = 1.37 θ = 13.68
McLachlan–Reich 2–3–1 N = 31 N = 955 N = 945
(energy-preserving) θ = 54.19 θ = 1.71 θ = 17.23
MR 4th-order 2–3–1 N = 26 N = 135 N = 431
(nonpreserving) θ = 64.92 θ = 12.15 θ = 37.85
MR 4th-order 2–3–1 N = 18 N = 73 N = 196
(energy-preserving) θ = 95.13 θ = 22.60 θ = 83.45
Runge–Kutta N = 405 N = 12,771 N = 13,512
(nonpreserving) θ = 4.03 θ = 0.13 θ = 1.20
Runge–Kutta N = 404 N = 12,785 N = 12,773
(energy-preserving) θ = 4.04 θ = 0.13 θ = 1.27
AB–AM N = 782 N > 20,480 N > 20,480
(nonpreserving) θ = 2.08 failed failed
AB–AM N = 451 N = 14,274 N = 14,279
(energy-preserving) θ = 3.62 θ = 0.11 θ = 1.14
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TABLE V

The Performance of Algorithms in High-Accuracy Simulations

T = 4.0 T = 40.0 T = 40.0
Algorithm ε = 10−6 ε = 0.001 ε = 10−6

McLachlan–Reich 2–3–1 N > 40,960 N > 37,533 N > 163,840
(nonpreserving) failed θ = 4.34 failed
McLachlan–Reich 2–3–1 N > 40,960 N = 29,760 N > 163,840
(energy-preserving) failed θ = 5.47 failed
MR 4th-order 2–3–1 N = 2364 N = 7526 N = 41,617
(nonpreserving) θ = 6.89 θ = 21.63 θ = 3.92
MR 4th-order 2–3–1 N = 1034 N = 3282 N > 163,840
(energy-preserving) θ = 15.76 θ = 49.60 failed
3rd order N = 36,552 N > 40,960 N > 163,840
(nonpreserving) θ = 0.45 failed failed
3rd order N = 3700 N = 11,621 N = 65,631
(energy-preserving) θ = 4.40 θ = 14.01 θ = 2.48
4th order N = 5294 N = 32,656 N = 131,473
(nonpreserving) θ = 3.07 θ = 4.98 θ = 1.24
4th order N = 3888 N = 12,275 N = 69,254
(energy-preserving) θ = 4.19 θ = 13.26 θ = 2.35

accuracy when combined with energy preservation. The best-performing McLachlan–Reich
implementation, with axis ordering 2–3–1, acted more like a third-order-accurate algorithm
than a second-order algorithm. The latter tended to benefit less from the use of energy
preservation.

The third-order method when combined with energy preservation was substantially su-
perior to every Group B, C, or D method. For example, in column 3 of Table IV, the
third-order method with energy preservation needs only 652 steps to achieve the same
accuracy as 5573 steps of the augmented second-order method—a better than seven-fold
increase in efficiency. It is impressive to note that this level of accuracy was obtained with a
mean rotation of 25 degrees per simulation step. Even better speed improvements are real-
ized with higher levels of accuracy: in column 2, only 209 steps of the third-order algorithm
with energy preservation have the same overall accuracy as 6513 steps of the augmented
second-order method—a better than 25-fold increase in efficiency!

The closest competitor to the third-order method with energy preservation from Groups
B, C, and D is the McLachlan–Reich 2–3–1 method. Here we note that the more accuracy
that is required (10−6 versus 10−3) and the longer the period of the simulation, then the
greater the advantage of the third-order method with energy preservation. Of course, this
should be expected when comparing a third-order method with a second-order method,
but it should be noted that this advantage is occurring already with fairly large simulation
steps (e.g., for the long-term simulations reported in Table V, the simulation performs
mean rotations of 4.40 degrees, 14.01 degrees, and 2.48 degrees). From Table I, we see that,
modulo implementation issues, the speeds of the two methods are more-or-less comparable;
therefore, the third-order method is overall more efficient in terms of accuracy than the
McLachlan–Reich second-order methods.

Table V shows more clearly the impressive accuracy of the third-order method with
energy preservation. In column 2, we see that 11,621 simulation steps with mean rotation
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of just over 14 degrees per step still maintain an accuracy of 0.001. And, 65,631 steps of
mean rotation 2.48 degrees gives an accuracy of 10−6.

The rest of Table V shows the relative performance of the other best-performing simu-
lation methods. Measuring in terms of number of steps, the symplectic fourth-order MR
method with the 2–3–1 ordering (non-energy-preserving) was able to achieve higher ac-
curacy than the third-order method with energy preservation—the symplectic algorithm
consistently needed about two-thirds as many steps as the third-order energy-preserving al-
gorithm. However, since the former algorithm has a computational cost of more than twice
that of the latter, the third-order algorithm with energy preservation enjoys an advantage in
this regard.

The fourth-order method without energy preservation predictably did significantly better
than the third-order method without energy preservation. With energy preservation, we
observed the surprising result that the third- and fourth-order algorithms have essentially
equivalent accuracy. Both experimentally exhibited better than fourth-order accuracy, but we
have no theoretical justification for why the third-order algorithm with energy preservation
performed as well as the fourth-order algorithm.

One other somewhat odd feature of Table V arises in the comparison of the MR 2–3–1
algorithm with energy preservation to the MR 2–3–1 algorithm without energy preservation.
First, since the symplectic algorithms are so good at preserving energy it is surprising how
much adding energy preservation helps; furthermore, adding the energy preservation to
the symplectic algorithms is somewhat inelegant and presumably destroys the symplectic
properties. Second, although about half as many steps were needed by the energy-preserving
version, the energy-preserving version failed to converge at all in the most demanding
simulation (the last column of the table). This was presumably due to the fact that so many
operations are performed per step (13 rotations plus the energy-correction operation), and
that roundoff errors accumulated more quickly than in the other algorithms, rendering the
algorithm incapable of converging to the target accuracy.

To verify that our higher order algorithms are correct and actually have the expected
higher order accuracy, consider a simulation for a total timeT , whereT is held constant.
If N steps are used, then the time steph is proportional to 1/N; hence a third-order al-
gorithm would have errorO(1/N3) per time step, and so the overall error for the entire
simulation is expected to beO(1/N2). Likewise a fourth-order algorithm should have over-
all error O(1/N3). Actually, the overall error should be somewhat lower than this since
we expect some cancellation of errors. Our experiments with the third- and fourth-order
methods without energy preservation confirmed that these algorithms are indeed third and
fourth order (respectively). The third-order method with energy preservation was seen to
be substantially better than third order: indeed comparing the last two columns of Table V
or comparing the last column of Table IV and the first column of Table V, we see that a
six-fold increase in the number of steps yields a 1000-fold increase in overall accuracy! This
performance was generally seen in other situations, in that we typically saw that doubling
the number of steps caused the overall error to be divided by about 15. Thus the experi-
mental evidence indicates that the third-order method with energy preservation acts like a
better-than-fourth-order-accurate algorithm.7

7 A fourth-order algorithm would nominally have the overall error drop by a factor of 8 when the number of
steps is doubled, but in fact it would sometimes do better owing to cancellation of errors. The observed factor
of 15 means that the algorithm was between fourth-order and fifth-order accurate for our test scenario.
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In viewing the data in Table IV, we see that the use of energy preservation improves
the simulation accuracy substantially in the case of the Group D algorithms; in fact, our
empirical observations suggest that the Group D algorithms with energy preservation act
very much like second-order-accurate Group C methods. The AB–AM method, the third-
order method, the second-order 1–2–3 McLachlan–Reich method, and the fourth-order
2–3–1 symplectic method also benefited substantially from energy preservation. The re-
maining methods acheived only a modest improvement with the use of energy preservation,
and the augmented second-order method had a small decrease in accuracy when combined
with energy preservation.

7. CONCLUSIONS

We have introduced several new algorithms for the simulation of rigid rotations. We
derived a third-order term which can be used to improve the energy preservation of a
second-order simulation method (in the “augmented second-order algorithm”) or which
can be used to formulate an third-order method which is correctly third order. We further
derived fourth-order correction terms in the general setting of Lie algebras and gave a
corresponding fourth-order-accurate algorithm. These algorithms can be readily extended
to higher orders and apply to general Lie algebras. Second, we gave a simple and easy-to-
calculate method for preserving energy exactly based on reorienting the body slightly so
as to preserve both momentum and energy. This reorientation is done at right angles to the
direction of movement and thus introduces very little error. First-order methods combined
with energy preservation were experimentally observed to act like second-order-accurate
methods. The third-order method combined with energy preservation was experimentally
observed to act like a better-than-fourth-order-accurate method.

Our experiments were carried out on torque-free bodies, but since the algorithms were
designed without any special assumptions regarding torques, our methods should also work
well in the presence of torques.

Traditional implementations of algorithms such as Runge–Kutta or the Adams–
Bashforth–Moulton predicator–corrector method are not nearly as efficient at simulating
rotation as the augmented second-order method or the third-order method or the symplectic
methods. The augmented second-order method is approximately six times as efficient as
Runge–Kutta when computational speed is accounted for, and the third-order methods are
substantially even more efficient for high long-term accuracy.

Let us consider the question of which algorithm is best to use. In general, we recommend
the use of one of the following: the augmented second-order, the third-order, the fourth-
order, the McLachlan–Reich algorithm, or the fourth-order symplectic algorithm. The first
three (especially the third- and fourth-order methods) can be combined with our energy
preservation method and also thereby achieve better accuracy as well as stability. The
symplectic algorithms can also be combined with our energy preservation method, but
this would seemingly destroy the symplectic property and would be a somewhat inelegant
choice.

The answer to which algorithm is best will depend largely on the application. First, if one
is interested mainly in long-term stability with large time steps, then the McLachlan–Reich
second-order method is a strong candidate. This method allow only a small fluctuation in
energy and is simple to implement with a reasonable computational cost, especially if Cayley
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transforms are used. The fourth-order symplectic method has even better energy stability
and significantly more accuracy, albeit at a higher computational cost per step. A similar
stability can be obtained by using our second-order or third-order methods with the energy-
preservation method; these can provide very good accuracy and require somewhat lower
computational resources. Second, if one is interested in absolute long-term accuracy, then
the third-order method with energy preservation gives the best accuracy per computational
cost. Third, if one can estimate the derivatives of the angular momentum, then the second-,
third-, and fourth-order algorithms can incorporate these derivatives directly.

As a general observation, if one is simulating the rotation of a single isolated rigid body,
then there are a number of ways to do this more directly: one could use elliptic functions for
instance, or one could use any of our algorithms to simulate the body through one “wobble”
to very high accuracy and then predict the future positions of the rigid body very accurately.
Thus, any interesting use of the rigid-body rotation algorithms should work well in the
presence of external torques. This is potentially an important advantage for the our second-,
third-, and fourth-order algorithms, since if one can estimate the external torque, or more
generally, the derivatives of the angular momentum, then this can be directly incorporated
into these algorithms.
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